在本报告中,我们描述了我们提交给Epic-Kitchens-100无监督的域适应(UDA)挑战的技术细节。为了应对UDA设置下存在的域移位,我们首先利用了最近的域概括(DG)技术,称为相对规范对准(RNA)。其次,我们将这种方法扩展到无标记的目标数据工作,从而使模型更简单地以无监督的方式适应目标分布。为此,我们将UDA算法包括在内,例如多级对抗对准和专心熵。通过分析挑战设置,我们注意到数据中存在二次并发转移,通常称为环境偏见。它是由存在不同环境(即厨房)引起的。为了处理这两个班次(环境和时间段),我们扩展了系统以执行多源多目标域的适应性。最后,我们在最终提案中采用了不同的模型来利用流行视频体系结构的潜力,并为合奏改编介绍了两次损失。我们的提交(条目“ PLNET”)在排行榜上可见,并在“动词”中排名第二,并且在“名词”和“ Action”中都处于第三位。
translated by 谷歌翻译
在机器人技术中,Visual Place识别是一个连续的过程,它作为输入视频流,以产生机器人在已知位置地图中的当前位置的假设。此任务需要针对实际应用的强大,可扩展和高效的技术。这项工作提出了使用顺序描述符对技术的详细分类法,突出了不同的机制,以融合各个图像的信息。实验结果的完整基准支持了这种分类,该基准提供了有关这些不同建筑选择的优势和劣势的证据。与现有的顺序描述方法相比,我们进一步研究了变压器而不是CNN骨架的生存能力,我们提出了一个名为SEQVLAD的新的临时序列级聚合器,该序列级别的聚合器在不同数据集中胜过先前的艺术状态。该代码可从https://github.com/vandal-vpr/vg-transformers获得。
translated by 谷歌翻译
Diffusion models have achieved justifiable popularity by attaining state-of-the-art performance in generating realistic objects from seemingly arbitrarily complex data distributions, including when conditioning generation on labels. Unfortunately, however, their iterative nature renders them very computationally inefficient during the sampling process. For the multi-class conditional generation problem, we propose a novel, structurally unique framework of diffusion models which are hierarchically branched according to the inherent relationships between classes. In this work, we demonstrate that branched diffusion models offer major improvements in efficiently generating samples from multiple classes. We also showcase several other advantages of branched diffusion models, including ease of extension to novel classes in a continual-learning setting, and a unique interpretability that offers insight into these generative models. Branched diffusion models represent an alternative paradigm to their traditional linear counterparts, and can have large impacts in how we use diffusion models for efficient generation, online learning, and scientific discovery.
translated by 谷歌翻译
The polynomial kernels are widely used in machine learning and they are one of the default choices to develop kernel-based classification and regression models. However, they are rarely used and considered in numerical analysis due to their lack of strict positive definiteness. In particular they do not enjoy the usual property of unisolvency for arbitrary point sets, which is one of the key properties used to build kernel-based interpolation methods. This paper is devoted to establish some initial results for the study of these kernels, and their related interpolation algorithms, in the context of approximation theory. We will first prove necessary and sufficient conditions on point sets which guarantee the existence and uniqueness of an interpolant. We will then study the Reproducing Kernel Hilbert Spaces (or native spaces) of these kernels and their norms, and provide inclusion relations between spaces corresponding to different kernel parameters. With these spaces at hand, it will be further possible to derive generic error estimates which apply to sufficiently smooth functions, thus escaping the native space. Finally, we will show how to employ an efficient stable algorithm to these kernels to obtain accurate interpolants, and we will test them in some numerical experiment. After this analysis several computational and theoretical aspects remain open, and we will outline possible further research directions in a concluding section. This work builds some bridges between kernel and polynomial interpolation, two topics to which the authors, to different extents, have been introduced under the supervision or through the work of Stefano De Marchi. For this reason, they wish to dedicate this work to him in the occasion of his 60th birthday.
translated by 谷歌翻译
This paper presents the development of a system able to estimate the 2D relative position of nodes in a wireless network, based on distance measurements between the nodes. The system uses ultra wide band ranging technology and the Bluetooth Low Energy protocol to acquire data. Furthermore, a nonlinear least squares problem is formulated and solved numerically for estimating the relative positions of the nodes. The localization performance of the system is validated by experimental tests, demonstrating the capability of measuring the relative position of a network comprised of 4 nodes with an accuracy of the order of 3 cm and an update rate of 10 Hz. This shows the feasibility of applying the proposed system for multi-robot cooperative localization and formation control scenarios.
translated by 谷歌翻译
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and other transformations belonging to an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, the implementation of a kernel basis does not generalize to other symmetry transformations, which complicates the development of group equivariant models. We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels. The resulting framework offers a simple and flexible way to implement Steerable CNNs and generalizes to any group $G$ for which a $G$-equivariant MLP can be built. We apply our method to point cloud (ModelNet-40) and molecular data (QM9) and demonstrate a significant improvement in performance compared to standard Steerable CNNs.
translated by 谷歌翻译
The development and adoption of artificial intelligence (AI) technologies in space applications is growing quickly as the consensus increases on the potential benefits introduced. As more and more aerospace engineers are becoming aware of new trends in AI, traditional approaches are revisited to consider the applications of emerging AI technologies. Already at the time of writing, the scope of AI-related activities across academia, the aerospace industry and space agencies is so wide that an in-depth review would not fit in these pages. In this chapter we focus instead on two main emerging trends we believe capture the most relevant and exciting activities in the field: differentiable intelligence and on-board machine learning. Differentiable intelligence, in a nutshell, refers to works making extensive use of automatic differentiation frameworks to learn the parameters of machine learning or related models. Onboard machine learning considers the problem of moving inference, as well as learning, onboard. Within these fields, we discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT), giving priority to advanced topics going beyond the transposition of established AI techniques and practices to the space domain.
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5\% on average, can be directly applied in diverse graphs ranging from biological networks to road networks, and allows for fast planning in time-critical robotics domains.
translated by 谷歌翻译
Pretrained language models that have been trained to predict the next word over billions of text documents have been shown to also significantly predict brain recordings of people comprehending language. Understanding the reasons behind the observed similarities between language in machines and language in the brain can lead to more insight into both systems. Recent works suggest that the prediction of the next word is a key mechanism that contributes to the alignment between the two. What is not yet understood is whether prediction of the next word is necessary for this observed alignment or simply sufficient, and whether there are other shared mechanisms or information that is similarly important. In this work, we take a first step towards a better understanding via two simple perturbations in a popular pretrained language model. The first perturbation is to improve the model's ability to predict the next word in the specific naturalistic stimulus text that the brain recordings correspond to. We show that this indeed improves the alignment with the brain recordings. However, this improved alignment may also be due to any improved word-level or multi-word level semantics for the specific world that is described by the stimulus narrative. We aim to disentangle the contribution of next word prediction and semantic knowledge via our second perturbation: scrambling the word order at inference time, which reduces the ability to predict the next word, but maintains any newly learned word-level semantics. By comparing the alignment with brain recordings of these differently perturbed models, we show that improvements in alignment with brain recordings are due to more than improvements in next word prediction and word-level semantics.
translated by 谷歌翻译